Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Prenat Diagn ; 44(1): 77-80, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38110236

RESUMO

At 16 + 6-weeks a fetal scan performed in the second pregnancy of a 42 y.o. woman identified a right multicystic dysplastic kidney, left renal agenesis, absent urinary bladder, myocardial hypertrophy, increased nuchal fold, a single umbilical artery, and oligohydramnios. Trio exome sequencing analysis detected a novel pathogenic NONO variant. Postmortem examination after the termination of pregnancy confirmed the ultrasound findings and also revealed pulmonary hypoplasia, retrognathia and low-set ears. The variant was a novel de novo hemizygous pathogenic loss-of-function variant in NONO [NM_007363.5], associated with a rare X-linked recessive neurodevelopmental disorder, named intellectual developmental disorder, X-linked syndromic 34 (OMIM#300967). The postnatal characteristic features of this disorder include intellectual disability, developmental delay, macrocephaly, structural abnormalities involving the corpus callosum and/or cerebellum, left ventricular noncompaction and other congenital heart defects. In the prenatal setting, the phenotype has been poorly described, with all described cases presenting with heart defects. This case highlights the need of further clinical delineation to include renal abnormalities in the prenatal phenotype spectrum.


Assuntos
Cardiopatias Congênitas , Deficiência Intelectual , Nefropatias , Anormalidades Urogenitais , Gravidez , Feminino , Humanos , Rim/diagnóstico por imagem , Rim/anormalidades , Feto/anormalidades , Nefropatias/diagnóstico por imagem , Nefropatias/genética , Deficiência Intelectual/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a RNA/genética
2.
Cells ; 12(19)2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37830578

RESUMO

Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder that appears in adult FMR1 premutation carriers. The neuropathological hallmark of FXTAS is an intranuclear inclusion in neurons and astrocytes. Nearly 200 different proteins have been identified in FXTAS inclusions, being the small ubiquitin-related modifier 2 (SUMO2), ubiquitin and p62 the most highly abundant. These proteins are components of the protein degradation machinery. This study aimed to characterize SUMO2/3 expression levels and autophagy process in human postmortem brain samples and skin fibroblast cultures from FXTAS patients. Results revealed that FXTAS postmortem brain samples are positive for SUMO2/3 conjugates and supported the idea that SUMO2/3 accumulation is involved in inclusion formation. Insights from RNA-sequencing data indicated that SUMOylation processes are significantly upregulated in FXTAS samples. In addition, the analysis of the autophagy flux showed the accumulation of p62 protein levels and autophagosomes in skin fibroblasts from FXTAS patients. Similarly, gene set analysis evidenced a significant downregulation in gene ontology terms related to autophagy in FXTAS samples. Overall, this study provides new evidence supporting the role of SUMOylation and autophagic processes in the pathogenic mechanisms underlying FXTAS.


Assuntos
Síndrome do Cromossomo X Frágil , Tremor , Adulto , Humanos , Tremor/genética , Tremor/metabolismo , Tremor/patologia , Ubiquitina/metabolismo , Proteína do X Frágil de Retardo Mental/genética , Síndrome do Cromossomo X Frágil/patologia , Ataxia/patologia , Autofagia , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo
3.
Liver Int ; 43(8): 1822-1836, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37312667

RESUMO

BACKGROUND & AIMS: Transcription co-activator factor 20 (TCF20) is a regulator of transcription factors involved in extracellular matrix remodelling. In addition, TCF20 genomic variants in humans have been associated with impaired intellectual disability. Therefore, we hypothesized that TCF20 has several functions beyond those described in neurogenesis, including the regulation of fibrogenesis. METHODS: Tcf20 knock-out (Tcf20-/- ) and Tcf20 heterozygous mice were generated by homologous recombination. TCF20 gene genotyping and expression was assessed in patients with pathogenic variants in the TCF20 gene. Neural development was investigated by immufluorescense. Mitochondrial metabolic activity was evaluated with the Seahorse analyser. The proteome analysis was carried out by gas chromatography mass-spectrometry. RESULTS: Characterization of Tcf20-/- newborn mice showed impaired neural development and death after birth. In contrast, heterozygous mice were viable but showed higher CCl4 -induced liver fibrosis and a differential expression of genes involved in extracellular matrix homeostasis compared to wild-type mice, along with abnormal behavioural patterns compatible with autism-like phenotypes. Tcf20-/- embryonic livers and mouse embryonic fibroblast (MEF) cells revealed differential expression of structural proteins involved in the mitochondrial oxidative phosphorylation chain, increased rates of mitochondrial metabolic activity and alterations in metabolites of the citric acid cycle. These results parallel to those found in patients with TCF20 pathogenic variants, including alterations of the fibrosis scores (ELF and APRI) and the elevation of succinate concentration in plasma. CONCLUSIONS: We demonstrated a new role of Tcf20 in fibrogenesis and mitochondria metabolism in mice and showed the association of TCF20 deficiency with fibrosis and metabolic biomarkers in humans.


Assuntos
Fibroblastos , Fígado , Humanos , Camundongos , Animais , Fibroblastos/patologia , Fígado/patologia , Cirrose Hepática/patologia , Mitocôndrias/patologia , Fatores de Transcrição/genética
4.
Genes (Basel) ; 14(4)2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-37107571

RESUMO

Neurological disorders (ND) are diseases that affect the brain and the central and autonomic nervous systems, such as neurodevelopmental disorders, cerebellar ataxias, Parkinson's disease, or epilepsies. Nowadays, recommendations of the American College of Medical Genetics and Genomics strongly recommend applying next generation sequencing (NGS) as a first-line test in patients with these disorders. Whole exome sequencing (WES) is widely regarded as the current technology of choice for diagnosing monogenic ND. The introduction of NGS allows for rapid and inexpensive large-scale genomic analysis and has led to enormous progress in deciphering monogenic forms of various genetic diseases. The simultaneous analysis of several potentially mutated genes improves the diagnostic process, making it faster and more efficient. The main aim of this report is to discuss the impact and advantages of the implementation of WES into the clinical diagnosis and management of ND. Therefore, we have performed a retrospective evaluation of WES application in 209 cases referred to the Department of Biochemistry and Molecular Genetics of the Hospital Clinic of Barcelona for WES sequencing derived from neurologists or clinical geneticists. In addition, we have further discussed some important facts regarding classification criteria for pathogenicity of rare variants, variants of unknown significance, deleterious variants, different clinical phenotypes, or frequency of actionable secondary findings. Different studies have shown that WES implementation establish diagnostic rate around 32% in ND and the continuous molecular diagnosis is essential to solve the remaining cases.


Assuntos
Epilepsia , Exoma , Humanos , Sequenciamento do Exoma , Estudos Retrospectivos , Exoma/genética , Fenótipo , Epilepsia/diagnóstico , Epilepsia/genética
6.
Genes (Basel) ; 13(11)2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36360245

RESUMO

A psychiatric disorder is a mental illness involving significant disturbances in thinking, emotional regulation or behavior [...].


Assuntos
Transtornos Mentais , Neurobiologia , Humanos , Transtornos Mentais/genética
7.
J Clin Med ; 11(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35806855

RESUMO

Lethal congenital contracture syndrome 11 (LCCS11) is caused by homozygous or compound heterozygous variants in the GLDN gene on chromosome 15q21. GLDN encodes gliomedin, a protein required for the formation of the nodes of Ranvier and development of the human peripheral nervous system. We report a fetus with ultrasound alterations detected at 28 weeks of gestation. The fetus exhibited hydrops, short long bones, fixed limb joints, absent fetal movements, and polyhydramnios. The pregnancy was terminated and postmortem studies confirmed the prenatal findings: distal arthrogryposis, fetal growth restriction, pulmonary hypoplasia, and retrognathia. The fetus had a normal chromosomal microarray analysis. Exome sequencing revealed two novel compound heterozygous variants in the GLDN associated with LCCS11. This manuscript reports this case and performs a literature review of all published LCCS11 cases.

8.
Antioxidants (Basel) ; 11(6)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35740026

RESUMO

The objective of this study is to describe the alterations occurring during the neurodegenerative process in skin fibroblast cultures from C9orf72 patients. We characterized the oxidative stress, autophagy flux, small ubiquitin-related protein SUMO2/3 levels as well as the mitochondrial function in skin fibroblast cultures from C9orf72 patients. All metabolic and bioenergetic findings were further correlated with gene expression data obtained from RNA sequencing analysis. Fibroblasts from C9orf72 patients showed a 30% reduced expression of C9orf72, ~3-fold increased levels of oxidative stress and impaired mitochondrial function obtained by measuring the enzymatic activities of mitochondrial respiratory chain complexes, specifically of complex III activity. Furthermore, the results also reveal that C9orf72 patients showed an accumulation of p62 protein levels, suggesting the alteration of the autophagy process, and significantly higher protein levels of SUMO2/3 (p = 0.03). Our results provide new data reinforcing that C9orf72 cells suffer from elevated oxidative damage to biomolecules and organelles and from increased protein loads, leading to insufficient autophagy and an increase in SUMOylation processes.

9.
J Clin Med ; 11(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35456280

RESUMO

Female FMR1 (Fragile X mental retardation 1) premutation carriers are at risk for developing fragile X-associated primary ovarian insufficiency (FXPOI), a condition characterized by amenorrhea before age 40 years. Not all women with a FMR1 premutation suffer from primary ovarian insufficiency and nowadays there are no molecular or other biomarkers that can help predict the occurrence of FXPOI. Long non-coding RNAs (lncRNAs) comprise a group of regulatory transcripts which have versatile molecular functions, making them important regulators in all aspects of gene expression. In recent medical studies, lncRNAs have been described as potential diagnostic biomarkers in many diseases. The present study was designed to determine the expression profile of three lncRNAs derived from the FMR1 locus, FMR4, FMR5 and FMR6, in female FMR1 premutation carriers in order: (i) to determine a possible role in the pathogenesis of FXPOI and (ii) to investigate whether they could serve as a biomarker for the diagnosis of FXPOI. FMR4, FMR5 and FMR6 transcripts levels were evaluated in total RNA extracted from peripheral blood by digital droplet PCR and compared between FMR1 premutation carriers with FXPOI and without FXPOI. The diagnostic value of lncRNAs was evaluated by receiver operating characteristic (ROC) analysis. Results revealed a significant association between FXPOI and high expression levels of FMR4. No association was obtained for FMR5 or FMR6. ROC curve analysis revealed that FMR4 can distinguish FMR1 premutation carrier with FXPOI with a diagnostic power of 0.67. These findings suggest a potential role of FMR4 as a possible biomarker for FXPOI.

10.
Orphanet J Rare Dis ; 17(1): 60, 2022 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-35183220

RESUMO

BACKGROUND: Neurodevelopmental disorders (NDDs) are a group of heterogeneous conditions, which include mainly intellectual disability, developmental delay (DD) and autism spectrum disorder (ASD), among others. These diseases are highly heterogeneous and both genetic and environmental factors play an important role in many of them. The introduction of next generation sequencing (NGS) has lead to the detection of genetic variants in several genetic diseases. The main aim of this report is to discuss the impact and advantages of the implementation of NGS in the diagnosis of NDDs. Herein, we report diagnostic yields of applying whole exome sequencing in 87 families affected by NDDs and additional data of whole genome sequencing (WGS) from 12 of these families. RESULTS: The use of NGS technologies allowed identifying the causative gene alteration in approximately 36% (31/87) of the families. Among them, de novo mutation represented the most common cause of genetic alteration found in 48% (15/31) of the patients with diagnostic mutations. The majority of variants were located in known neurodevelopmental disorders genes. Nevertheless, some of the diagnoses were made after the use of GeneMatcher tools which allow the identification of additional patients carrying mutations in THOC2, SETD1B and CHD9 genes. Finally the use of WGS only allowed the identification of disease causing variants in 8% (1/12) of the patients in which previous WES failed to identify a genetic aetiology. CONCLUSION: NGS is more powerful in identifying causative pathogenic variant than conventional algorithms based on chromosomal microarray as first-tier test. Our results reinforce the implementation of NGS as a first-test in genetic diagnosis of NDDs.


Assuntos
Transtorno do Espectro Autista , Transtornos do Neurodesenvolvimento , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação/genética , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Sequenciamento do Exoma/métodos
11.
Mol Neurobiol ; 59(2): 1230-1237, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34978044

RESUMO

Hexanucleotide repeat expansion in C9ORF72 gene is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD). Loss of C9ORF72 protein function and a toxic gain-of-function directly by the RNA or RAN translation have been proposed as triggering pathological mechanisms, along with the accumulation of TDP-43 protein. In addition, mitochondrial defects have been described to be a major driver of disease initiation. Mitochondrial DNA copy number has been proposed as a useful biomarker of mitochondrial dysfunction. The aim of our study was to determine the presence of mtDNA copy number alterations in C9ALS/FTD patients. Therefore, we assessed mtDNA copy number in postmortem prefrontal cortex from 18 C9ORF72 brain donors and 9 controls using digital droplet PCR. A statistically significant decrease of 50% was obtained when comparing C9ORF72 samples and controls. This decrease was independent of age and sex. The reduction of mtDNA copy number was found to be higher in patients' samples presenting abundant TDP-43 protein inclusions. A growing number of studies demonstrated the influence of mtDNA copy number reduction on neurodegeneration. Our results provide new insights into the role of mitochondrial dysfunction in the pathogenesis of C9ALS/FTD.


Assuntos
Esclerose Amiotrófica Lateral , Demência Frontotemporal , Esclerose Amiotrófica Lateral/metabolismo , Proteína C9orf72/genética , Variações do Número de Cópias de DNA/genética , Expansão das Repetições de DNA , DNA Mitocondrial/genética , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Humanos , Córtex Pré-Frontal/metabolismo
12.
Front Aging Neurosci ; 14: 1073258, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36688175

RESUMO

Introduction: Fragile X-associated tremor/ataxia syndrome (FXTAS, OMIM# 300623) is a late-onset neurodegenerative disorder with reduced penetrance that appears in adult FMR1 premutation carriers (55-200 CGGs). Clinical symptoms in FXTAS patients usually begin with an action tremor. After that, different findings including ataxia, and more variably, loss of sensation in the distal lower extremities and autonomic dysfunction, may occur, and gradually progress. Cognitive deficits are also observed, and include memory problems and executive function deficits, with a gradual progression to dementia in some individuals. Aquaporin 4 (AQP4) is a commonly distributed water channel in astrocytes of the central nervous system. Changes in AQP4 activity and expression have been implicated in several central nervous system disorders. Previous studies have suggested the associations of AQP4 single nucleotide polymorphisms (SNPs) with brain-water homeostasis, and neurodegeneration disease. To date, this association has not been studied in FXTAS. Methods: To investigate the association of AQP4 SNPs with the risk of presenting FXTAS, a total of seven common AQP4 SNPs were selected and genotyped in 95 FMR1 premutation carriers with FXTAS and in 65 FMR1 premutation carriers without FXTAS. Results: The frequency of AQP4-haplotype was compared between groups, denoting 26 heterozygous individuals and 5 homozygotes as carriers of the minor allele in the FXTAS group and 25 heterozygous and 2 homozygotes in the no-FXTAS group. Statistical analyses showed no significant associations between AQP4 SNPs/haplotypes and development of FXTAS. Discussion: Although AQP4 has been implicated in a wide range of brain disorders, its involvement in FXTAS remains unclear. The identification of novel genetic markers predisposing to FXTAS or modulating disease progression is critical for future research involving predictors and treatments.

13.
Fetal Diagn Ther ; 48(11-12): 849-856, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34872079

RESUMO

INTRODUCTION: The introduction of prenatal cell-free DNA as a screening test has surpassed traditional combined first-trimester screening (cFTS) in the detection of common trisomies. However, its current limitation in detecting only common trisomies is affecting the diagnostic yield for other clinically significant chromosomal abnormalities. METHODS: In efforts to optimize the detection of fetuses with genetic abnormalities, we have analyzed the relationship between the cFTS risk score and biomarkers with atypical chromosomal abnormalities. Furthermore, we have evaluated the impact of prenatal cell-free DNA screening on the detection of chromosomal abnormalities in our population. For these purposes, we performed a retrospective study of 877 singleton pregnancies who underwent chromosomal microarray analysis (CMA) between 2013 and 2020 and for whom cFTS data were available. RESULTS: The results demonstrated that low levels of free beta-human chorionic gonadotropin (ß-hCG) (≤0.37 multiples of the median) and increased fetal nuchal translucency (NT) (≥3.5 mm) were statistically associated with the presence of atypical chromosomal abnormalities. In fact, the risk of pathogenic CMA results increased from 6 to 10% when fetal NT was increased and from 6 to 20% when a low serum ß-hCG level was detected in the high-risk cFTS group. Moreover, our results showed that altered serum levels of ß-hCG can have a substantial impact on the early detection of clinically relevant copy number variants. DISCUSSION/CONCLUSION: Traditional cFTS can potentially identify a substantial proportion of atypical chromosomal aberrations, and women with increased NT or low maternal serum ß-hCG levels are at increased risk of having pathogenic CMA results. Our results may help clinicians and women decide whether invasive testing or prenatal cell-free DNA screening testing is more appropriate for each situation.


Assuntos
Gonadotropina Coriônica Humana Subunidade beta , Síndrome de Down , Gonadotropina Coriônica Humana Subunidade beta/sangue , Aberrações Cromossômicas , Síndrome de Down/diagnóstico , Síndrome de Down/epidemiologia , Síndrome de Down/genética , Feminino , Humanos , Medição da Translucência Nucal , Gravidez , Primeiro Trimestre da Gravidez , Proteína Plasmática A Associada à Gravidez , Diagnóstico Pré-Natal/métodos , Estudos Retrospectivos
14.
Front Psychiatry ; 12: 728952, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721105

RESUMO

FMR1 premutation is defined by 55-200 CGG repeats in the Fragile X Mental Retardation 1 (FMR1) gene. FMR1 premutation carriers are at risk of developing a neurodegenerative disease called fragile X-associated tremor/ataxia syndrome (FXTAS) and Fragile X-associated primary ovarian insufficiency (FXPOI) in adulthood. In the last years an increasingly board spectrum of clinical manifestations including psychiatric disorders have been described as occurring at a greater frequency among FMR1 premutation carriers. Herein, we reviewed the neuroimaging findings reported in relation with psychiatric symptomatology in adult FMR1 premutation carriers. A structured electronic literature search was conducted on FMR1 premutation and neuroimaging yielding a total of 3,229 articles examined. Of these, 7 articles were analyzed and are included in this review. The results showed that the main radiological findings among adult FMR1 premutation carriers presenting neuropsychiatric disorders were found on the amygdala and hippocampus, being the functional abnormalities more consistent and the volumetric changes more inconsistent among studies. From a molecular perspective, CGG repeat size, FMR1 mRNA and FMRP levels have been investigated in relation with the neuroimaging findings. Based on the published results, FMRP might play a key role in the pathophysiology of the psychiatric symptoms described among FMR1 premutation carriers. However, additional studies including further probes of brain function and a broader scope of psychiatric symptom measurement are required in order to obtain a comprehensive landscape of the neuropsychiatric phenotype associated with the FMR1 premutation.

15.
PLoS One ; 16(7): e0253866, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34242293

RESUMO

The objective of this study was to determine whether maternal or paternal ages have any impact on the prenatal incidence of genomic copy number variants (CNV) in fetuses with structural anomalies. We conducted a non-paired case-control study (1:2 ratio) among pregnancies undergoing chromosomal microarray analysis (CMA) because of fetal ultrasound anomalies, from December 2012 to May 2020. Pregnancies with any pathogenic copy number variant (CNV), either microdeletion or microduplication, were defined as cases. Controls were selected as the next two pregnancies with the same indication for CMA but with a normal result. Logistic regression was used, adjusting by use of assisted reproductive technology (ART) and parental smoking. Stratified analysis was performed according to CNV type (de novo/inherited and recurrent/non-recurrent). The study included 189 pregnancies: 63 cases and 126 controls. Mean maternal age in cases was 33.1 (SD 4.6) years and 33.9 (SD 6.0) years in controls. Mean paternal mean age was 34.5 (SD 4.8) years in cases and 35.8 (SD 5.8) years in controls. No significant differences in maternal or paternal age were observed, neither in stratified analysis according to the CNV type. Moreover, the proportion of cases were not significantly different between non-advanced and advanced ages, either considering paternal or maternal ages. The presence of pathogenic CNV at CMA in fetuses with structural anomalies was not found to be associated with advanced paternal or maternal age.


Assuntos
Anormalidades Congênitas/epidemiologia , Variações do Número de Cópias de DNA , Idade Materna , Idade Paterna , Ultrassonografia Pré-Natal/estatística & dados numéricos , Adulto , Fatores Etários , Estudos de Casos e Controles , Anormalidades Congênitas/diagnóstico , Anormalidades Congênitas/genética , Feminino , Humanos , Incidência , Masculino , Gravidez , Fatores de Risco
17.
Fertil Steril ; 116(3): 843-854, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34016428

RESUMO

OBJECTIVE: To identify modifying genes that explains the risk of fragile X-associated primary ovarian insufficiency (FXPOI). DESIGN: Gene-based, case/control association study, followed by a functional screen of highly ranked genes using a Drosophila model. SETTING: Participants were recruited from academic and clinical settings. PATIENT(S): Women with a premutation (PM) who experienced FXPOI at the age of 35 years or younger (n = 63) and women with a PM who experienced menopause at the age of 50 years or older (n = 51) provided clinical information and a deoxyribonucleic acid sample for whole genome sequencing. The functional screen was on the basis of Drosophila TRiP lines. INTERVENTION(S): Clinical information and a DNA sample were collected for whole genome sequencing. MAIN OUTCOME MEASURES: A polygenic risk score derived from common variants associated with natural age at menopause was calculated and associated with the risk of FXPOI. Genes associated with the risk of FXPOI were identified on the basis of the P-value from gene-based association test and an altered level of fecundity when knocked down in the Drosophila PM model. RESULTS: The polygenic risk score on the basis of common variants associated with natural age at menopause explained approximately 8% of the variance in the risk of FXPOI. Further, SUMO1 and KRR1 were identified as possible modifying genes associated with the risk of FXPOI on the basis of an untargeted gene analysis of rare variants. CONCLUSIONS: In addition to the large genetic effect of a PM on ovarian function, the additive effects of common variants associated with natural age at menopause and the effect of rare modifying variants appear to play a role in FXPOI risk.


Assuntos
Proteína do X Frágil de Retardo Mental/genética , Menopausa/genética , Mutação , Ovário/fisiopatologia , Insuficiência Ovariana Primária/genética , Adulto , Fatores Etários , Animais , Animais Geneticamente Modificados , Estudos de Casos e Controles , Drosophila melanogaster/genética , Feminino , Fertilidade/genética , Patrimônio Genético , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Pessoa de Meia-Idade , Fenótipo , Insuficiência Ovariana Primária/diagnóstico , Insuficiência Ovariana Primária/fisiopatologia , Medição de Risco , Fatores de Risco
18.
Genes (Basel) ; 12(4)2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33921338

RESUMO

Advances in high-throughput technologies and its implementation worldwide have had a considerable impact on the elucidation of the molecular causes underlying neurodevelopmental psychiatric disorders, especially for autism spectrum disorder and intellectual disability (ID). Nevertheless, etiology remains elusive in close to 50% of cases, even in those families with multiple affected individuals, strongly hinting at a genetic cause. Here we present a case report of two siblings affected with severe ID and other comorbidities, who embarked on a genetic testing odyssey until diagnosis was reached by using whole genome sequencing (WGS). WGS identified a maternally inherited novel missense variant (NM_031466.7:c.1037G > A; p.Gly346Glu) and a paternally inherited 90 kb intragenic deletion in TRAPPC9 gene. This report demonstrates the clinical utility of WGS in patients who remain undiagnosed after whole exome sequencing.


Assuntos
Deficiência Intelectual/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Mutação de Sentido Incorreto , Sequenciamento Completo do Genoma/métodos , Predisposição Genética para Doença , Heterozigoto , Humanos , Masculino , Herança Materna , Herança Paterna , Linhagem , Irmãos
19.
Front Mol Biosci ; 7: 135, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32766278

RESUMO

There are four classes of CGG repeat alleles in the FMR1 gene: normal alleles have up to 44 repeats; patients with Fragile X Syndrome have more than 200 repeats; those between 55 and 200 CGGs are considered FMR1 premutation alleles, because they are associated with maternal expansions of the number of CGGs in the next generation and finally, alleles between 45 and 54 CGGs are called intermediate or gray zone alleles. In these last categories, the stability depends on the presence of AGG interruptions, which usually occurs between 9 and 10 CGGs. In this context, we have studied retrospectively 66 women with CGG repeats between 45 and 65, and their offspring. In total 87 transmissions were analyzed with triplet repeat primed PCR using AmplideX® FMR1 PCR (Asuragen, Austin, TX, USA) and we found that alleles with CGG repeats between 45 and 58 do not expand in the next generation except two cases with 56 repeats and 0 AGG interruptions. Furthermore, we have found four females with alleles with more than 59 CGG repeats and 2 AGG interruptions that do not expand either. Alleles from 56 CGG repeats without AGGs expand in all cases. In light of these results and those of the literature, we consider that the risk of unstable transmissions should be based on the presence or absence of AGG interruptions and not on the classical cutoffs which define each category of FMR1 alleles. The application of these results in the genetic and reproductive counseling is essential and AGG interruptions should always be studied.

20.
Clin Genet ; 98(4): 379-383, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32632923

RESUMO

Chromosomal microarray analysis (CMA) has now replaced karyotyping in the analysis of prenatal cases with a fetal structural anomaly, whereas in those pregnancies undergoing invasive prenatal diagnosis with a normal fetal ultrasound, conventional karyotyping is still performed. The aims of this study were to establish the diagnostic yield of CMA in prenatal diagnosis, and to provide new data that might contribute to reconsider current practices. We reviewed 2905 prenatal samples with a normal rapid aneuploidy detection test referred for evaluation by CMA testing. Our study revealed pathogenic and reported susceptibility copy number variants associated with syndromic disorders in 4.8% (n = 138/2905) of cases, being 2.8% (n = 81/2905) the estimated added diagnostic value of CMA over karyotyping. Clinically significant CMA abnormality was detected in 5.4% (107/1975) of the fetuses with ultrasound anomalies and in 1.4% (5/345) of those considered as low-risk pregnancies. Our series shows that in prenatal samples, CMA increases 2-fold the diagnostic yield achieved by conventional karyotyping.


Assuntos
Cromossomos/genética , Doenças Genéticas Inatas/genética , Testes Genéticos , Diagnóstico Pré-Natal , Aneuploidia , Variações do Número de Cópias de DNA/genética , Feminino , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/patologia , Humanos , Análise em Microsséries/tendências , Gravidez , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...